Wnt/Wingless signaling in Drosophila.
نویسندگان
چکیده
The Wingless (Wg) pathway represents one of the best-characterized intercellular signaling networks. Studies performed in Drosophila over the last 30 years have contributed to our understanding of the role of Wg signaling in the regulation of tissue growth, polarity, and patterning. These studies have revealed mechanisms conserved in the vertebrate Wnt pathways and illustrate the elegance of using the Drosophila model to understand evolutionarily conserved modes of gene regulation. In this article, we describe the function of Wg signaling in patterning the Drosophila embryonic epidermis and wing imaginal disc. As well, we present an overview of the establishment of the Wg morphogen gradient and discuss the differential modes of Wg-regulated gene expression.
منابع مشابه
Wingless Signaling: An Axin to Grind
Negative regulation of Wingless/Wnt signaling plays an important role in embryonic patterning and is also needed for tumor suppression in adult tissues. New findings in Drosophila reveal a novel mechanism for down-regulating the activity of the Wingless/Wnt pathway.
متن کاملPowerful Drosophila screens that paved the wingless pathway
The Wnt/Wingless (Wg) signaling cascade controls a number of biological processes in animal development and adult life; aberrant Wnt/Wg signaling can cause diseases. In the 1980s genes were discovered that encode core Wnt/Wg pathway components: their mutant phenotypes were similar and an outline of a signaling cascade emerged. Over the years our knowledge of this important signaling system incr...
متن کاملLinking Colorectal Cancer to Wnt Signaling
emerged shortly after this, when the Wnt pathway was *MRC Laboratory of Molecular Biology discovered by genetic analysis in Drosophila. Specific Hills Road mutant phenotypes led to the identification of critical Cambridge CB2 2QH Wnt signaling components, while epistasis experiments United Kingdom determined the functional order of these components ‡Department of Immunology and in the pathway. ...
متن کاملMembrane-tethered Drosophila Armadillo cannot transduce Wingless signal on its own.
Drosophila Armadillo and its vertebrate homolog beta-catenin are key effectors of Wingless/Wnt signaling. In the current model, Wingless/Wnt signal stabilizes Armadillo/beta-catenin, which then accumulates in nuclei and binds TCF/LEF family proteins, forming bipartite transcription factors which activate transcription of Wingless/Wnt responsive genes. This model was recently challenged. Overexp...
متن کاملProbing the canonicity of the Wnt/Wingless signaling pathway
The hallmark of canonical Wnt signaling is the transcriptional induction of Wnt target genes by the beta-catenin/TCF complex. Several studies have proposed alternative interaction partners for beta-catenin or TCF, but the relevance of potential bifurcations in the distal Wnt pathway remains unclear. Here we study on a genome-wide scale the requirement for Armadillo (Arm, Drosophila beta-catenin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cold Spring Harbor perspectives in biology
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2012